Measurement: Estimating Volume

Aim:

Estimate volume (for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)) and capacity (for example, using water).

I can estimate volume using cubic
centimetres (cm^{3}).

Success Criteria:

I can explain what volume is and measure it in cm^{3}.
I can estimate the number of centimetre cubes needed to build shapes.

I can estimate the volume of cuboids in cm^{3}.

Key/New Words:

Solid, liquid, volume, capacity, cubic centimetre, cubed, estimate.

Resources:

Lesson Pack
Centimetre cubes
Individual whiteboards and pens - class set
Scissors
Glue sticks

Preparation:

Open Top Cube Net - one per pair
Differentiated Estimating Volume Activity Sheet - one per child

Prior Learning: It will be helpful if children have estimated the capacity of containers (covered in the previous lesson).

Learning Sequence

	Fill the Bucket! Children work out which containers they could use to fill a bucket exactly. Use the Lesson Presentation to discuss their answers.	
\square	What Is Volume? Use the Lesson Presentation to explain what is meant by capacity and what is meant by volume.	\square
	How to Estimate Volume: Children use centimetre cubes to build the shapes shown on the Lesson Presentation. They count how many cubes are used for each shape and write the volume of each shape in cubic centimetres $\left(\mathrm{cm}^{3}\right)$. They then look at pictures of shapes and estimate the volume in cm^{3} by counting cubes without building the shapes.	\bigcirc
	Estimating Capacity: Children cut out and glue together the Open Top Cube Net. Get children to estimate the capacity of the cube, using enough centimetre cubes to cover the bottom layer of the cube. Encourage children to think about how many centimetre cubes would be in a layer and how many layers they think the larger cube would hold. Confirm that there would be five layers of 25 cubes to make an overall capacity of 125 cubes, or $125 \mathrm{~cm}^{3}$.	\bigcirc
	Calculating and Estimating Volume: The Lesson Presentation demonstrates how the volume of cubes and cuboids can be found by multiplying the length by the width and multiplying this by the height. Children calculate the volume of cuboids. If needed, children can still use cubes to build the shapes.	\bigcirc
	Volume Problems: Children predict the volume of a cuboid if its dimensions were doubled and then calculate to check their answer. Were they correct or not? Why do they think the volume has more than doubled? Then, they estimate the volume of cuboids with some cubes missing.	\bigcirc
	Estimating Volume: Children complete the differentiated Estimating Volume Activity Sheets, calculating and estimating the volume of a variety of shapes in cm^{3}. Children estimate the volumes of cuboids and of two more complex shapes, using centimetre cubes to build the shapes. They estimate the volume of two cuboids if the dimensions were doubled. Children estimate the volume of cuboids and more complex shapes. They can use centimetre cubes to check their answers, if required. They estimate the volume of a cuboid if the dimensions were doubled. They estimate the volume of a cuboid with some cubes missing. Children estimate the volume of cuboids and more complex shapes; some shapes are shown with some interior lines missing. They are encouraged to do this without using centimetre cubes. They estimate the volume of a cube if the dimensions were doubled. They estimate the volume of a cuboid with some cubes missing.	

Exploreit

Rollit: In pairs, children roll two dice. They multiply the numbers together and each use centimetre cubes to build a shape that has a volume of the product. How many different shapes can they build that have the same volume?
Drawit: Children draw 2D representations of some of the shapes they made throughout the lesson using Isometric Dot Paper. They record the volume of the shapes in cm^{3}.
Estimateit: Provide children with nets for open topped cubes. As in the main lesson, children use centimetre cubes to estimate each larger cube's capacity.

Measurement

Maths I Year 5 I Measurement I Estimating Volume and Capacity I Lesson 2 of 2: Estimating Volume

Aim

- I can estimate volume using cubic centimetres (cm^{3}).

IMND

Success Criteria

- I can explain what volume is and measure it in cm^{3}.
- I can estimate the number of centimetre cubes needed to build shapes.
- I can estimate the volume of cuboids in cm^{3}.

Fill the Bucket!

Which of the other containers could you use to fill the bucket with exactly four litres of water?

How mi

Tilly uses the one-litre waterinc 750 ml fill the! fill it. She fills the one-litre wate can four times to fill the larger bucket.
$4 \pi|||\mid$

```
            Yes!
        4l \div500ml
        4000ml \div500ml = 8
```

You would be able to use 8 full jars of water to fill the 4 -litre bucket.

What Is Volume?

How to Estimate Volume

Now, use centimetre cubes to build these

How to Estimate Volume

Can you count the cubes to estimate the volume of each shape without building it? Remember to count the cubes that you can't see.

Calculating and Estimating Volume

To find the volume of any cuboid, we must first find the area of one of its faces.

Area is measured using square centimetres. To find the area of a square or rectangle, we multiply the width by the length.

Area of one face $=4 \mathrm{~cm}^{2}$
2 cm
$2 \mathrm{~cm} \times 2 \mathrm{~cm}=4 \mathrm{~cm}^{2}$

 1

Calculating and Estimating Volume

To find the volume of a cuboid, we multiply the width by the length and then multiply this by the height.
Gount the quberrito voricke calculation as
Q8ess the shape chave $8 \mathrm{~cm}^{3}$ volume of $8 \mathrm{~cm}^{3}$? This is the same as finding
the area of one face and
multiplying it by the depth
of the shape. This is the same as finding
the area of one face and
multiplying it by the depth
of the shape. This is the same as finding
the area of one face and
multiplying it by the depth
of the shape. of the shape.

2 layers of $4 \mathrm{~cm}^{3}=8 \mathrm{~cm}^{3}$ or $2 \times 4 \mathrm{~cm}^{3}=8 \mathrm{~cm}^{3}$

2 cm
2 layers of $4 \mathrm{~cm}^{3}=8 \mathrm{~cm}^{3}$
or $2 \times 4 \mathrm{~cm}^{3}=8 \mathrm{~cm}^{3}$

Calculating and Estimating Volume

Use length \times width \times height to find theDoes it change the answer if you volumes of these shapes. multiply in a different order? Discuss with your partner.

Volume Problems

Volume Problems

Regent Studies|www.regentstudies.com

Volume Problems

Volume Problems

Regent Studies | www.regentstudies.com

Volume 24

Usisegl cefritienetneetrabes, bes to build
 cuboids can you build that
Hewernavolucrubeesf cwric int? cuboids can you build tha
theiveraabsluqhteesf coxtcht? each layer?

Is this the only way to build a
cuboid with a volume of $24 \mathrm{~cm}^{3}$?
Discuss this with your partner.
Is this the only way to build a
cuboid with a volume of $24 \mathrm{~cm}^{3}$?
Discuss this with your partner.
Is this the only way to build a
cuboid with a volume of $24 \mathrm{~cm}^{3}$?
Discuss this with your partner.
3 cm

Aim

- I can estimate volume using cubic centimetres (cm^{3}).

Success Criteria

- I can explain what volume is and measure it in cm^{3}.
- I can estimate the number of centimetre cubes needed to build shapes.
- I can estimate the volume of cuboids in cm^{3}.

 11111

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Estimating Volume

I can estimate volume using cubic centimetres (cm^{3}).
000

1. Use centimetre cubes to estimate the volume of these shapes.
a) Volume $=$ \qquad cm^{3}
b) Volume $=$ \qquad cm^{3}

c) Volume $=$ \qquad cm^{3}
d) Volume $=$ \qquad cm^{3}

e) Volume $=$ \qquad cm^{3}

f) Volume $=$ \qquad cm^{3}

i) Volume = \qquad cm^{3}

g) Volume $=$ \qquad cm^{3}
h) Volume $=$ \qquad cm^{3}

j) Volume = \qquad cm^{3}

k) Volume $=$ \qquad cm^{3}
l) Volume = \qquad cm^{3}

2.

Estimate the volume of this shape if each dimension were doubled.

Estimated volume = \qquad cm^{3}

Now use centimetre cubes to build the shape. What is the volume?
Volume $=$ \qquad cm^{3}
b. Estimate the volume of this shape if each dimension were doubled.

Estimated volume $=$ \qquad cm^{3}

Now use centimetre cubes to build the shape. What is the volume? Volume $=$ \qquad cm^{3}

* Estimating Volume Answers

1.

a) $5 \mathrm{~cm}^{3}$
b) $12 \mathrm{~cm}^{3}$
c) $8 \mathrm{~cm}^{3}$
d) $20 \mathrm{~cm}^{3}$
e) $24 \mathrm{~cm}^{3}$
f) $32 \mathrm{~cm}^{3}$
g) $24 \mathrm{~cm}^{3}$
h) $36 \mathrm{~cm}^{3}$
i) $30 \mathrm{~cm}^{3}$
j) $64 \mathrm{~cm}^{3}$
k) $6 \mathrm{~cm}^{3}$
l) $8 \mathrm{~cm}^{3}$
2.
a. Volume $=24 \mathrm{~cm}^{3}$
b. Volume $=96 \mathrm{~cm}^{3}$

Estimating Volume

I can estimate volume using cubic centimetres (cm^{3}).
OO

1. Estimate the volume of these shapes. You can use centimetre cubes to check your answer.
a) Volume $=$ \qquad cm^{3}

b) Volume $=$ \qquad cm^{3}

c) Volume $=$ \qquad cm^{3}

d) Volume $=$ \qquad cm^{3}

e) Volume $=$ \qquad cm^{3}
f) Volume $=$ \qquad cm^{3}

2. Calculate the volume of these shapes. Can you do this without using centimetre cubes?
a) Volume $=$ \qquad cm^{3}

c) Volume $=$ \qquad cm^{3}
b) Volume $=$ \qquad cm^{3}

e) Volume $=$ \qquad cm^{3}
f) Volume = \qquad cm^{3}

3. Estimate the volume of this shape if each dimension were doubled.

Estimated volume $=$ \qquad cm^{3}

Now use centimetre cubes to build the shape. What is the volume?
Volume = \qquad cm^{3}
4. Some cubes are missing from this cube.

a. What are the fewest cubes possible that you could add to make this shape a cube? \qquad
b. What would the volume of the cube be?

Volume = \qquad cm^{3}

You could use centimetre cubes to build the shape to check your answers.

Estimating Volume Answers
1.
a) $16 \mathrm{~cm}^{3}$
b) $36 \mathrm{~cm}^{3}$
c) $30 \mathrm{~cm}^{3}$
d) $22 \mathrm{~cm}^{3}$
e) $10 \mathrm{~cm}^{3}$
f) $24 \mathrm{~cm}^{3}$
2.
a) $64 \mathrm{~cm}^{3}$
b) $36 \mathrm{~cm}^{3}$
c) $30 \mathrm{~cm}^{3}$
d) $6 \mathrm{~cm}^{3}$
e) $27 \mathrm{~cm}^{3}$
f) $16 \mathrm{~cm}^{3}$
3. Volume $=240 \mathrm{~cm}^{3}$
4.
a. 6
b. $27 \mathrm{~cm}^{3}$

Estimating Volume

I can estimate volume using cubic centimetres (cm^{3}).

1. Calculate the volume of these shapes. Can you do it without using centimetre cubes?
a) Volume $=$ \qquad cm^{3}
b) Volume $=$ \qquad cm^{3}

c) Volume $=$ \qquad cm^{3}

d) Volume $=$ \qquad cm^{3}

e) Volume $=$ \qquad cm^{3}
f) Volume $=$ \qquad cm^{3}

2. Not all of the centimetre cubes have been shown on these shapes. Calculate the volume of each shape.
a) Volume $=$ \qquad cm^{3}

b) Volume $=$ \qquad cm^{3}

c) Volume $=$ \qquad cm^{3}
d) Volume $=$ \qquad cm^{3}

e) Volume $=$ \qquad cm^{3}
f) Volume $=$ \qquad cm^{3}

3. Estimate the volume of this shape if each dimension were doubled.

Estimated volume $=$ \qquad cm^{3}

Now use centimetre cubes to build the shape. What is the volume?
Volume = \qquad cm^{3}
4. Some cubes are missing from this cuboid.

a. What are the fewest cubes possible that you could add to make this shape a cuboid? \qquad
b. What would the volume of the cuboid be?

Volume = \qquad cm^{3}

Estimating Volume Answers
1.
a) $60 \mathrm{~cm}^{3}$
b) $125 \mathrm{~cm}^{3}$
c) $10 \mathrm{~cm}^{3}$
d) $13 \mathrm{~cm}^{3}$
e) $27 \mathrm{~cm}^{3}$
f) $44 \mathrm{~cm}^{3}$
2.
a) $160 \mathrm{~cm}^{3}$
b) $50 \mathrm{~cm}^{3}$
c) $22 \mathrm{~cm}^{3}$
d) $8 \mathrm{~cm}^{3}$
e) $19 \mathrm{~cm}^{3}$
f) $33 \mathrm{~cm}^{3}$
3. Volume $=64 \mathrm{~cm}^{3}$
4.
a. 33
b. $60 \mathrm{~cm}^{3}$

Please make sure that you print this resource at 100% so that all measurements are correct. To do this, follow the relevant steps below.

Adobe Reader or Adobe Acrobat

- Adobe Reader is a free PDF viewer, from Adobe. To install a copy of Adobe Reader, go to https://get.adobe.com/uk/reader/.
- Once Adobe Reader is installed, open your PDF.
- Go to File>Print.
- Under ‘Page Sizing \& Handling', select ‘Size’.
- From here, make sure that 'Actual Size' is selected.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Foxit Reader

- Go to File>Print.
- Set the 'Scaling' to 'None'.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Web Browser

- If printing from a web browser, such as Chrome, Firefox or Microsoft Edge make sure that your printer is set to print at 100%, either by unticking 'Fit to Page' or selecting 'Actual Size'.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Open Top Cube Net

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

Measurement | Estimating Volume

I can estimate volume using cubic centimetres $\left(\mathrm{cm}^{3}\right)$.		
I can explain what volume is and measure it in cm^{3}.		
I can estimate the number of centimetre cubes needed to build shapes.		
I can estimate the volume of cuboids in cm^{3}.		

